170 research outputs found

    Normal variation for adaptive feature size

    Full text link
    The change in the normal between any two nearby points on a closed, smooth surface is bounded with respect to the local feature size (distance to the medial axis). An incorrect proof of this lemma appeared as part of the analysis of the "crust" algorithm of Amenta and Bern

    Persistence for Circle Valued Maps

    Full text link
    We study circle valued maps and consider the persistence of the homology of their fibers. The outcome is a finite collection of computable invariants which answer the basic questions on persistence and in addition encode the topology of the source space and its relevant subspaces. Unlike persistence of real valued maps, circle valued maps enjoy a different class of invariants called Jordan cells in addition to bar codes. We establish a relation between the homology of the source space and of its relevant subspaces with these invariants and provide a new algorithm to compute these invariants from an input matrix that encodes a circle valued map on an input simplicial complex.Comment: A complete algorithm to compute barcodes and Jordan cells is provided in this version. The paper is accepted in in the journal Discrete & Computational Geometry. arXiv admin note: text overlap with arXiv:1210.3092 by other author

    Delaunay Edge Flips in Dense Surface Triangulations

    Full text link
    Delaunay flip is an elegant, simple tool to convert a triangulation of a point set to its Delaunay triangulation. The technique has been researched extensively for full dimensional triangulations of point sets. However, an important case of triangulations which are not full dimensional is surface triangulations in three dimensions. In this paper we address the question of converting a surface triangulation to a subcomplex of the Delaunay triangulation with edge flips. We show that the surface triangulations which closely approximate a smooth surface with uniform density can be transformed to a Delaunay triangulation with a simple edge flip algorithm. The condition on uniformity becomes less stringent with increasing density of the triangulation. If the condition is dropped completely, the flip algorithm still terminates although the output surface triangulation becomes "almost Delaunay" instead of exactly Delaunay.Comment: This paper is prelude to "Maintaining Deforming Surface Meshes" by Cheng-Dey in SODA 200

    Computing Topological Persistence for Simplicial Maps

    Full text link
    Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under Z2\mathbb{Z}_2 coefficients for a sequence of general simplicial maps and show how these maps arise naturally in some applications of topological data analysis. First, we observe that it is not hard to simulate simplicial maps by inclusion maps but not necessarily in a monotone direction. This, combined with the known algorithms for zigzag persistence, provides an algorithm for computing the persistence induced by simplicial maps. Our main result is that the above simple minded approach can be improved for a sequence of simplicial maps given in a monotone direction. A simplicial map can be decomposed into a set of elementary inclusions and vertex collapses--two atomic operations that can be supported efficiently with the notion of simplex annotations for computing persistent homology. A consistent annotation through these atomic operations implies the maintenance of a consistent cohomology basis, hence a homology basis by duality. While the idea of maintaining a cohomology basis through an inclusion is not new, maintaining them through a vertex collapse is new, which constitutes an important atomic operation for simulating simplicial maps. Annotations support the vertex collapse in addition to the usual inclusion quite naturally. Finally, we exhibit an application of this new tool in which we approximate the persistence diagram of a filtration of Rips complexes where vertex collapses are used to tame the blow-up in size.Comment: This is the revised and full version of the paper that is going to appear in the Proceedings of 30th Annual Symposium on Computational Geometr

    Approximating Loops in a Shortest Homology Basis from Point Data

    Full text link
    Inference of topological and geometric attributes of a hidden manifold from its point data is a fundamental problem arising in many scientific studies and engineering applications. In this paper we present an algorithm to compute a set of loops from a point data that presumably sample a smooth manifold MβŠ‚RdM\subset \mathbb{R}^d. These loops approximate a {\em shortest} basis of the one dimensional homology group H1(M)H_1(M) over coefficients in finite field Z2\mathbb{Z}_2. Previous results addressed the issue of computing the rank of the homology groups from point data, but there is no result on approximating the shortest basis of a manifold from its point sample. In arriving our result, we also present a polynomial time algorithm for computing a shortest basis of H1(K)H_1(K) for any finite {\em simplicial complex} KK whose edges have non-negative weights
    • …
    corecore